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1. Introduction

1.1. Spainer Whitehead category. Let Map∗(X,Y ) be the space of continuous
functions from X to Y and let [X,Y ] = π0(X,Y ). One of the ultimate goals
of homotopy theory is to describe [X,Y ]. This is an extremely difficult problem
because the set [X,Y ] does not have algebraic structure in general. However, if
X ∼= ΣX ′ for some pointed space X ′, then [X,Y ] ∼= π1(Map∗(X

′, Y )) admits
a group structure. Moreover, if X ∼= Σ2X ′′ for some pointed space X ′′, then
[X,Y ] ∼= π2Map∗(X

′′, Y ) is abelian group.
One can use these observations to study [X,Y ] in general: There are maps

[X,Y ] → [ΣX,ΣY ] → [Σ2X,Σ2Y ] → · · ·

The set [X,Y ]s = lim−→n
[ΣnX,ΣnY ] is called the group of stable maps from X to

Y for finite CW complexes X and Y . By the Freudenthal suspension theorem, the
colimit system stabilizes after a finite step and [X,Y ]s provides an approximation
to [X,Y ].

Theorem 1.1. Let X be an n-connected topological space. Then

πk(X) → πk+1(ΣX)

is an isomorphism for k ≤ 2n.

The set [X,Y ]s of stable maps can be regarded as a linearized version of the
homotopy set [X,Y ]. To extend this linearization, we can linearize the homotopy
category of Top itself. The resulting category is known as the stable homotopy
category or the homotopy category of spectra.

Consider a category C whose objects are finite pointed CW complexes, and whose
morphisms are given by Hom(X,Y ) = [X,Y ]s. By construction, the suspension
functor X 7→ ΣX gives fully faithful embedding from C to itself. However, the
suspension functor is not an equivalence in general. To obtain a slightly larger
category CSW where the suspension functor is an equivalence, we formally invert
ΣnX for all n ∈ Z. Conceretly, Ho(Spfin) is a category where

(1) objects are pairs (X,n), where X is pointed CW complex and n ∈ Z, which
can be viewed as ΣnX.

(2) morphisms are given by HomSpfin((X,n), (Y,m)) = lim−→k
[Σn+kX,Σm+kY ].

This is called Spanier-Whitehead category. In fact, it is homotopy category of finite
spectra.
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1.2. Generalized cohomology theory. Stable homotopy theory is to study in-
variants of (pointed) topological space that are invariant under suspension. Singular
cohomology is one example of stable invariant:

H̃n(X) ∼= H̃n+1(ΣX)

More generally, one can consider generalized cohomology theories:

Definition 1.2. A (reduced) generalized cohomology theory is a sequence of func-
tors En : Ho(TopopCW,∗) → Ab for n ∈ Z with suspension isomorphism

ρn : En+1(X)
≃−→ En(ΣX)

satisfying

(1) (exactness) For inclusion ι : A → X, consider a mapping cone Cι and we
have cofiber sequence A → X → Cι. Then it gives an exact sequence of
abelain groups

En(Cι) → En(X) → En(A)

(2) (additivity) For a collection of {Xi}i∈I of pointed CW complexes,

En(
∨
i∈I

Xi) ∼=
∏
i∈I

En(Xi)

Brown representability theorem guarantees that a generalized cohomology the-
ories En is representable by a pointed space Xn, and the suspension isomorphism
ρn gives a homotopy equivalence Xn

∼= ΩXn+1. In otherwords, any generalized
cohomolgoy theory is representbale by a spectrum X.

2. Spectra

2.1. Sequential spectrum.

Definition 2.1. A (sequential) spectrum is a sequence of pointed spaces X =
(Xn)n∈N equipped with structure maps ρn : ΣXn → Xn+1 for each n ∈ N. A
morphism f : X → Y between spectra is a sequence of maps fn : Xn → Yn such
that the following diagram commutes:

ΣXn ΣYn

Xn+1 Yn+1

ρX
n ρY

n

Definition 2.2. Let X be a spectrum. The k-th stable homotopy group πk(X)
of X is defined as lim−→n

πn+k(Xn), where the map πn+k(Xn) → πn+k+1(Xn + 1) is

given by the composition

πn+k(Xn) → πn+k+1(ΣXn) → πn+k+1(Xn+1)

Example 2.3. Let X be a pointed space. The suspension spectrum Σ∞X is the
spectrum whose n-th level is ΣnX. In particualr, the sphere spectrum S = Σ∞S0.
The stable homotopy group πk(Σ

∞X) is given by

πk(Σ
∞X) = lim−→

n

πn+k(Σ
nX) = πs

k(X).
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2.2. Ω-spectrum.

Definition 2.4. A spectrum X is called Ω-spectrum if the adjoint map ρ̃n : Xn →
ΩXn+1, corresponding to the structure map ρn, is a homotopy equivalence for all
n ∈ N. The zero-th space X0 of Ω-spectrum is called an infinite loop space.

Brown representabiltiy implies that every generalized cohomology theories is
represented by an Ω-spectrum. If X is Ω-spectrum, then πk(X) ∼= πk+n(Xn) for
all n s.t. k + n ≥ 0.

Example 2.5. Consider ordinary cohomology Hn(−;A) with coefficients in an
abelain group A. The sequence {Hn(−;A)}n∈Z is represented by an Ω-spectrum
HA. Specifically, (HA)n = K(A,n), where K(A,n) is Eilenberg-Maclane space
and K(A,n) ≃ ΩK(A,n+ 1). The stable homotopy groups of HA are given by

πk(HA) ∼=

{
A if k = 0

0 if k ̸= 0.

Example 2.6. Let U = lim−→n
U(n) be the infinite unitary group and BU =

lim−→n
BU(n) be its classifying space. The space Z × BU classifies stable complex

vector bundles. The Bott periodicity theorem states that

Ω(Z×BU) ≃ U and ΩU ≃ Z×BU.

Complex K-theory is a generalized cohomology represented by an Ω-spectrum KU .
Specifically, (KU)2n = Z×BU and (KU)2n+1 = U , with

πk(KU) ∼=
{

Z if k = 2n
0 if k = 2n+ 1

2.3. Thom spectrum.

Definition 2.7. Let E → B be a vector bundle of rank n. The Thom space of E
is defined as Th(E) := D(E)/S(E) where D(E) is the disk bundle and S(E) is the
sphere bundle.

The Thom space of E is also denoted by BE or ΣEB. When E is trivial bundle
of rank n over B, we have

Th(E) ∼= B ×Dn/B × Sn−1 ∼= B × Sn/B × {∞} ∼= Σn(B+)

The Thom space of E over B can be regarded as a twisted suspension of B by E.

Lemma 2.8. Th(E ⊕ Rn) ≃ ΣnTh(E)

Definition 2.9. The Thom spectrum functor Th : K0(B) → Sp is defined by

Th(W ) = Σ−dTh(E) for a virtual bundle W = E − Rd

For example, let M be a closed manifold with an embedding f : M → Rn. Then
TM ⊕ vM ∼= Rn where vM is the normal bundle of f . Therefore,

Th(−TM) = Σ−nTh(vM)

There is a universal Thom spectrumMO, whose base space is BO which classifies
stable real vector bundle. BO(n) = Grn(R∞) is the classifying space for O(n), and
the inclusion O(n) ↪→ O(n + 1) induces a canonical map BO(n) ↪→ BO(n + 1).
Thus,

BO := lim−→
n

BO(n)
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is the classifying space for the stable orthogonal group O := lim−→n
O(n). We have a

tautological bundle γn → BO(n), and MO(n) := Th(γn). The following commu-
tative diagram

γn ⊕R γn+1

BO(n) BO(n+ 1)

gives a structure map of the Thom spectrum MO:

ΣMO(n) ∼= Th(γn ⊕R) → Th(γn+1) = MO(n+ 1)

The Pontryagin-Thom construction implies the following:

Theorem 2.10. πd(MO(n)) is isomorphic to the group of d-dimensional closed
manifold up to cobordism.

2.4. Cellular spectrum. A cell complex is a space that is built by attaching cells
Dn via attaching maps. Cellular spectra are essentially cell complexes that may
include negative-dimensional cells.

Definition 2.11. A spectrumX is cellular if each spaceXn is a based cell complex,
and the structure map ΣXn → Xn+1 is an inclusion of a subcomplex.

A stable k-cell in X, for k ∈ Z, is (k+n)-cell in Xn for n ≥ 0. This corresponds
to a (k + n+ 1)-cell in ΣXn ⊆ Xn+1.

Example 2.12. If K is a based cell complex, then Σ∞K is cellular, with a stable
k-cell for every k-cell other than the basepoint. For instance, Sd has a single stable
d-cell.

Definition 2.13. A map f : A → X is called relative cellular spectrum if the n-th
relative structure map

An ∪ΣAn−1
ΣXn−1 → Xn

is a relative cell complex for all n ∈ N.

The follwoing theorem states that cellular spectra are also built by attaching
stable cells via attaching maps, similar to how cell complex are built.

Theorem 2.14. A map f : A → X is a relative cellular spectrum if and only if

A = X(−1) → X(0) → · · · → X(i−1) → X(i) →

where X = lim−→n
X(n), and X(i−1) → X(i) is obtained by attaching cells:∨

k Fnk
Smk−1
+

∨
Fnk

Dmk
+

X(i−1) X(i)

The category of (sequential) spectra Sp has the stable model structure:

(1) The cofibrations are the retracts of the relative cell complex.
(2) The weak equivalences are the stable equivalences.
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(3) The fibrations are the stable fibrations: maps X → Y such that Xn → Yn is
a Serre fibration, and the following square is a homotopy pullback diagram:

Xn ΩXn+1

Yn ΩYn+1
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